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BICOLLIMATED NEAR-FIELD GREGORIAN
REFLECTOR ANTENNA

INTRODUCTION

It is known that the bifocal dual reflector antenna [11 and bifocal dielectric lens antennas [2,3]
have wider angle scan capability than their single focus counterparts. We propose a bicollimated near-
field Gregorian reflector antenna which has a better scan capability compared to a classical near-field
Gregorian reflector antenna [4]. The design presented applies to both symmetric or offset [51
configurations. However, only the offset configuration, which eliminates feed blockage, will be used.

The bicollimated reflector is obtained by first designing a bicollimated cylindrical reflector system
using geometrical optics techniques and then revolving the cross section curves to form a surface of
revolution. Selected parts of these surfaces will form an offset reflector configuration. Figure I shows
the cross section of an offset configuration of a bicollimated near-field Gregorian reflector antenna. The
cross sections of the main and subreflector are designed so that when the feed array is scanned to an
angle /3, the main beam is pointed to an angle -a relative to the reflector axis. These rays are shown,
in Fig. 1, by solid lines. Similarly, when the feed array is scanned to an angle -/3, the main beam is
required to be pointed to an angle a, as shown by the dotted lines in Fig. 1. It is shown later in this
report that only a series of points and slopes (or tangents) at those points on the cross sections of the
reflector can be obtained. Using these data, the reflector cross sections are represented completely by
best fit polynomials. This polynomial representation is used in computing the aperture phase errors
when the antenna beam is scanned to different angles by scanning the feed array. The results showed
that the bicollimated configuration has about 45% more scanning range than the corresponding confocal
parabolic configuration.

SHAPED
MAIN REFLECTOR

fl A ~~SHAPED
SUBREFLECTOR

Fig. I -Cross section of bicollimated near-field
Gregorian reflector

Manuscript approved October 8, 1982.
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DESIGN PROCEDURE

Figure 2 shows the cross section in the XZ-plane of an offset, bicollimated, nearfield Gregorian

reflector antenna. The Z-axis is the antenna axis of rotational symmetry. The feed array is assumed to
be located in the XY-plane. It is also assumed that the subreflector intersects the Z-axis at Z = P.
From symmetry, it is evident that the subreflector is perpendicular to the Z-axis at Z = P. . The
reflected phase front B corresponds to the incident phase front A. For perfect collimation, the path
length between these two phase fronts should be constant and is assumed to be L. Similarly, the path
length between the phase fronts C and D is also equal to L.

'-SUBREFLECTOR

XK. ZK

C A

Fig. 2 - Geometry of an offset bicollinated
Gregorian reflector

Knowing the initial point (XI, ZI) and the slope at that point on the subreflector, one can deter-
mine the main reflector point (XI, ZI) and the slope at that point by applying geometrical optics princi-
ples. Next, from this known point (Xl, Z t) and the slope on the main reflector, one can determine a
point (X2 , Z2) and the corresponding slope on the subreflector. By continuing this process a series of
points and slopes on the reflector surfaces are found in succession. The pertinent results are given by
two sets of formulas. The first gives a point (XA. , Zk,) and the slope at that point on the main reflector
when a point (Xk, Zk) and the corresponding slope on the subreflector are known. The relations
(obtained by tracing the rays emanating from phase front A) are:

Rk - L + ZA W- Xk sina (a)
W + Cos a

(2)XAh = XkI + (Zk - ZA) tan Yk,

(dz'/dx')z;kx = tan |k + a

K+1

(3)
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where

Rk = Zk cos / + Xk sin /3, (4)

Yk = yk + 2/3, (5)
and

I + sin Ik sin a (6)

COS Yk

In addition, Zk, Xk, and yk' are given by Eqs. (7), (8), and (11) for k > 2. The initial values, for
k = 1, are ZI = Pand XI = 0. From Fig. 2 it can be noted that yI = /3. Therefore, y is not needed
in Eq. (5) to find y I.

The second set gives a point (Zk+l, Xk+t) and the slope at that point on the subreflector when a
point (Xk', Zk) and the slope at the point on the main reflector are known. These relations (obtained
by tracing the rays emanating from phase front C, Fig. 2) are:

Zk+I = L - Rk+ ZkW' + Xk' sin /7
7k+I = ~W'+ cos/3

Xk+l = Xk' + (Zk - Zk+;) tan yk~l (8)

Vk+tI + /3

(dz/dx) Zk+lXXk+l | 2 l
where

Rk = -Zk cos a- Xk sin a, (10)

Yk+l = Yk + 2a, (11)
and

I + sin Yk+I sin 6 (12)

cos Yk+I

Starting with the initial point (XI, Z1 ) and the angle yl(= ,B), and making use of the first and
then the second set of formulas and continuing the process, a series of points and slopes on each
reflector surface can be found in succession.

POLYNOMIAL APPROXIMATION

The design procedure discussed in the previous section gives a finite number of points and an
equal number of slopes on the reflector surfaces. In order to define the reflector surfaces completely, it
is necessary to use an approximation. It is convenient to approximate the reflector cross sections by
best fit polynomials. Since the reflectors are axially symmetric, only even powers are required. The
reflector cross sections are represented by the polynomials

Z' = Bo + BIX,2 + B2 Xs4+..., (13)

Z = Ao + AIX,,2? + A2 X,4+ .. ;, (14)

where X, and Z, are the subreflector coordinates, and X,,, and Z. are the main reflector coordinates.

If the number of data points available limits the degree of the polynomial, the known slopes on
the reflector curves can be used to improve the accuracy.
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EQUIVALENT NEAR-FIELD GREGORIAN REFLECTOR

To compare the performance of the bicollimated reflector antenna, it is necessary to define an
equivalent confocal reflector system. The equivalence is established here by making the magnification
Mof the confocal reflector equal to /8/a and make the path-length between the incident and the radiat-
ing wavefronts equal to L for an on-axis beam for the confocal reflector. In addition, the subreflector is
assumed to be at the same distance P from the origin as in the bicollimated case. The first condition
gives the following relationships:

Fm/F. = M = /3/a, (15)

where Fm and F, are the focal lengths of the main and subreflector of an equivalent confocal reflector.

The second condition gives the following:

Fm + F, = L/2. (16)

Solving for Fm and F, from (15) and (16), we have

F, = L/2 (M + 1),

Fm = ML/2(M + 1).

Therefore, the equivalent parabolic subreflector is given by the equation

ZSP= P- I2L Ax2 (19)

and the equivalent parabolic main reflector is given by

Z7 p= (L/2)-P- 1+M XM2p (20)
2LM mp(0

There are other ways of defining an equivalent confocal reflector. However, there is no need to
find precise equivalence (if there is such a thing) because small changes in the Gregorian antenna
parameters do not appreciably influence its scanning performance as long as the confocal conditions is
not violated. Another point which should be noted is that at the outset it may appear that an
equivalent confocal reflector can be obtained simply by taking the first two terms in the polynomial
representation of the bicollimated reflector. However, the main and subreflectors so obtained will not
form a confocal set.

PHASE ERROR ANALYSIS

In the classical near-field Gregorian system [51, it is known that the amplitude distribution applied
to the feed array is reproduced over the main aperture without alteration. For values of a which are of
practical interest, the bicollimated reflector system does not deviate much from an equivalent classical
near-field Gregorian system. Therefore, it is reasonable to assume that the main aperture amplitude
distribution is the same as that of the feed array. However, the aperture phase errors are different in
the two systems. The purpose of this section is to analyze the aperture phase errors and show the
advantages of the bicollimated reflector system. Figure 3 shows the geometry used in analyzing the
aperture phase errors. The aperture phase errors are found by assuming that a plane wave is incident
on the main reflector at an angle 0 and 0, which also corresponds to the mainbeam direction. Path-
length errors on the aperture are determined from the path-length between the incident wavefront and
the corresponding feed array wavefront, as discussed in the appendix of this report. Equation (A23)
gives the path-length error on the aperture. The procedure given in the appendix applies to both bicol-
limated and confocal reflector antennas.
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A
MAIN

REFLECTOR

ZAf Z

AXIS OF S
ROTATION I UBREFLECTOR

PLANAR
FEED ARRAY

Fig. 3 - Path of general ray used in 3-D ray
tracing method

NUMERICAL EXAMPLE

As an example, a bicollimated reflector antenna is designed with a = 30,/ = 90, and L/P = 2.5.
Table I gives computed data points.

Table I - Computed Points on the Reflector
Cross Sections

By use of the data points shown in Table 1, the reflector cross sections are approximated by the
following best fit polynomial representation:

* = 0.999998 - 0.8018732 x52 - 0.01234972 .4, (21)

Zm = 0.253768 + 0.26682 x,2 + 0.00025741 xm, (22)

where

* = Zs/P, x 5= X5/P, Zm = Zm/P and xm = X 0/P.

Reflector surfaces are obtained by rotating the above cross sections about the Z-axis and choosing
only selected parts. Figure 4 shows the geometry and the antenna parameters of the offset bicollimated
reflector which is chosen as an example. The main reflector surface is chosen so that it is circular when
projected into the XY-plane. The main aperture is assumed to be completely utilized over the scanning
range of interest. The corresponding illuminated areas of the feed array and the subreflector surface
may change with scan angle. For the example under consideration, the main reflector diameter D =
1.6P and the main reflector is offset from the Z-axis by 0.3P to eliminate blockage due to the
subreflector when the beam is scanned below the Z-axis.

By use of the 3D ray tracing method developed in the appendix, a computer program is devised to
determine the aperture phase errors when the beam is scanned to different scan angles. Using that pro-
gram, it is possible to obtain path-length errors over the whole aperture. However, Fig. 5 -shows these
errors on the aperture in one plane (XZ-plane) only as the errors are similar in other planes. The solid

5

Zs/P A'S/P Zm/P _ X__P_

1.000000 0 -0.24342 0.196938
0.985926 -0.132464 -0.154958 0.608434
0.938416 -0.276962 0.057515 1.079506
0.836951 -0.450222 0.49982 1.678324
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Fig. 4 - Cross section of the bicollimated reflector
designed with a = 3°, a = 90 and L = 2.5 P

0.003 -- - CONFOCAL
REFLECTOR

es

I os= 0o

Fig. 5 - Aperture phase errors in XZ-plane

curves belong to the bicollimated reflector. As expected, the aperture errors for 0, = 30 (a = 3°) are
zero. However, for O, = 0 (on axis beam) the biocollimated reflector has aperture errors whose magni-
tude increases toward the edges of the aperture. For comparison, aperture errors are computed for an
equivalent confocal reflector and are shown as dashed curves in Fig. 5. For the confocal reflector, the
aperture errors are zero for 0, = 0 and increases with OS. The maximum errors appear towards the
edges of the aperture.

6
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For each scan angle, the maximum error on the aperture is determined by using the data shown
in Fig. 5 and similar data obtained for other planes. This maximum path-length error normalized to
aperture diameter is plotted in Fig. 6 as a function of the scan angle when the main beam is scanned in
0 = 0 plane. For the confocal reflector, the maximum path-length error increases monotonically with
the scan angle whereas the path-length error for the bicollimated reflector decreases with the scan angle
and becomes zero for 0 = a (3W in the example) and then increases monotonically with the scan angle.
For a maximum normalized path-length error of 0.0011, Fig. 6 shows that the confocal reflector can be
scanned up to 2.7° and the bicollimated reflector can be scanned up to 4°. Therefore, the bicollimated
reflector has about 48% more scanning range in X = 0 plane than the scanning range of an equivalent
confocal reflector. Figures 7 and 8 show similar results for scanning in k = 900 and 1800 planes.
Figure 9 shows the complete scanning ranges, for a maximum normalized path-length error of 0.0011,
for both confocal and bicollimated reflector antennas. The results show that the bicollimated reflector
has about 45% more scanning range than an equivalent confocal reflector.

Fig. 6 - Maximum error on the aperture when
scanned in 0 = 0 plane

CONFOCAL
REFLECTOR

2 3
SCAN ANGLE 8 IN DEGREES

Fig. 7 - Maximum error on the aperture when
scanned in (b = 900 plane
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2 3 4
SCAN ANGLE 6 IN DEGREES

Fig. 8 - Maximum error on the aperture when
scanned in b = 180° plane+ =100
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I
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Fig. 9 - Scanning ranges for confocal and bicollimated
reflectors for maximum normalized path-length error

CONCLUSIONS

A biocollimated dual reflector antenna, which can collimate a beam in two different directions, is
proposed. A design procedure is presented for determining the reflector surfaces. Aperture phase
errors are analyzed for different scan angles. The results show that the bicollimated reflector has about
45% more scanning range compared to an equivalent near-field Gregorian reflector
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Appendix

THREE-DIMENSIONAL RAY TRACING PROCEDURE

A ray tracing procedure is used to compute aperture phase errors for the bicollimated reflector
antenna. Figure 3 of this report is used to illustrate the procedure. First we compute the path length
of a general ray from a point A on the incident wave front through a point B(XAm,Ym,Zm) on the main
reflector and a point C(XA, Y5 ,Z5 ) on the subreflector, and finally to a corresponding point D(", Y') in
the feed plane. The equation of the subreflector is assumed to be a sixth degree polynomial and is
given as

Z5 = Bo + Bup1 + B2p' + B3p'S, (Al)

where p5 - A'x + y2

Similarly, the equation of the main reflector is

Z. = AO + Ap + A2 pm+ 3 P (A2)

where pm = A',m + YMl

The spherical coordinates 0, k define the direction of the general ray incident at a known point
B(X,,,, Y,,,Zm) on the main reflector. This incident ray is parallel to

ab = i sinO cos + j sinG sink + k cosO, (A3)

where i, j, k are the unit vectors parallel to X, Y, Z coordinates and lower case letters denote unit vec-
tors.

The length I AB 1, which is needed later to find the aperture phase errors, is given as

IAB ' Xm sinO coso + Ym sinO sink + Zm cosO. (A4)

To find the unit vector bC of the reflected ray, Snell's law is used to relate the incident, reflected,
and normal unit vectors at the point (XA, Ym,Zm) on the main reflector. This is given as

be = ab - 2Jm(im * ab), (A5)

where n,,, is the unit normal vector at the point (Xm, Ym,Zm) on the main reflector. By using Eq. (A2),
the unit normal h,,, is

- -iZmx-jZmy + k

L/1 + Zmx + Zmy 6)

where

Z. = am = A(2AXn,) + A2(4X,,', + 4Am Y)

+ A3 (6X',, + 12X,, Y2, + 6Xm Y4),

ZIPP = a yn1 = A I(2 Y) + A2(4 Y,,, + 4 Ym.Xm)
anY,

10
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+ A3 (6Y.' + 12Y.'XA', + 6Ym,'Xt). (A7)

The unit normal -ni can be expressed as

nm = i& + j8y + k, (A8)

where

"/VIxl + Zmx+ my

=y -Zmy/Nf I +Zm2x + Z y2

and

8, = I/ I + Zmx + Zmy-

Substituting for ab and iin, using Eqs. (A3) and (A8), in Eq. (AS), the unit vector bc is

bc = T Rx + J Ry + kRz (A9)

where

& = sinH coso - 2T8x,

Ry = sinO sinO-2T8y,

R, = cosH - 2 T8,

and T= nm * ab = 8, sinG coso + By sinO sink + 8, cosO.

The ray BC is given by

BC= i(X-sXm) +J(Ys, Ym) + k(Z-Zm). (AI0)
Equating the unit vectors bc = BC/IBC|, we will have three equations defining a line in space, only
two of which are independent; thus,

Xs-Xm -s- Ym = Zs m = R, (Al l)
Rx RY Rz

where R = IBI.

Equations (All) and (Al) are solved, as outlined below, to determine the point Xs Y5, Z, on
the subreflector. The following can be obtained from Eq. (All)

XA= R Rx + Xm,

Y, R Ry + Ym,

Zs= R Rz + Zm. (A12)

Knowing R, Eq. (A12) can be used to find the point on the subreflector. First, therefore, a solution for
R will be obtained by eliminating X', Y, and Z. in Eq. (Al) by using Eq. (A12). By doing this, a sixth
order equation (polynomial) in R is obtained as shown below,

a6R6 + a5R5 + a4R4 + a3R3 + a2R2 + ajR + ao= 0, (A13)
where

aO = Ao + AIS3 + A2 T5 + A 3E7 -Zm

a, = AIS2 + A2T4 + A 3E6 -R,

a2 = AIS, + A2T3 + A3E5,

11
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a3 = A2 T2 + A3 E4 ,

a4 = A2T, + A3 E3 ,

a5 = A3 E2.

a6 = A3E= ,
El = T SI,

E2= T2S, + TIS2,

E3 = T3S1 + T2S2 + TIS3 ,

E4= T4SA + T3S2 + T2S3,

E5 = T5SA + T4 S2 + T3S3,

E6= T5 S2 + T4 S3,

E7 = T5S3,

T. = 1j,

T2= 2SIS2,

T 3 = S2 + 2SIS3,

T4= 2S2S3,

T5= =3,

SI = R2 + 2

S2 = 2 ( R, X,,, + Rx Y.. )

and

S3 = Az + Ym.

Equation (A 13) is used to find R by using a standard routine for solving the roots of a polyno-
mial. In general there will be six roots for a sixth order polynomial; some are complex and some are
real, with only one correct real root. A procedure is devised, using physical constraints, to select the
correct root, and hence the value of R. Equation (A12) is then used to find the point (XA,Y5,Z5) on
the subreflector.

Next, the direction of the reflected ray CD and the length |GD| will be determined. Snell's law of
reflection at the point (XA, Y5,Z5) is written as

cd = bc - 2 * bc). (A 14)

The unit normal at the point of reflection on the subreflector is

= ia, +.ja, + kaz (A15)

where

.V= Z.N zI + Z,2, + Z,2,

a a -/ +Z1+~
4. = = Bl(2X%) + B2(4X, + 4AX' Y2)

axSK

12
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+ B3 (6 XA + 12XA' Y,3 + 6x 5 Y 54),

and

ZSY = a is = B 1 (2 Ys) + B 2(4 Y,3 + 4 Y, X,2)

+ B3 (6Ys5 + 12Y,3X'2 + 6YX, 4).

Substituting for be and k, using Eqs. (A9) and (A15) in Eq. (A 14), the unit vector cd is

cd = I(R, - 2Qax) + j(RY - 2Qay) + k(R, - 2Qaz), (A16)

where Q = ni * bc = aR, + a, R + azRz. Other parameters in Eq. (A16) have been defined previ-
ously. The ray CD can also be expressed as

C0D =iX' - X) +j( Y' - Ys) + k (- Zs) (A 17)

where the array aperture plane is defined as the plane Z'= 0 and (X' Y') is the point of intersection D
in the feed array plane.

The equation cd = CD/ICDI yields three equations; only two of them are independent, which are
sufficient to determine the point of intersection (A", Y') in the aperture plane Z' = 0:

X' - X Y' - Y., Z.,
Rx-2QaX Ry -2Qay R,-2Qa,'

from which

X= X (R-- 2Qa ) , (A18)(R, - 2QaT)
(R - 2 Qay) Z,
(R. - 2Qa ) (A19)

and

Z,= 0. (A20)

the path length ICDI is

ICDI =(X A'X)2 + (Y- y) 2 + (Z,- Z) 2. (A21)

The total path length is simply the sum of the component path lengths. Hence,

Lo= 1ABI + IRdI + ICDI. (A22)

For an assumed direction (0, 0) for the mainbeam it was noted that the direction of the rays
incident on the feed array are not perfectly parallel to each other. However, an optimum phase front
which minimizes aperture phase errors can be found. Let this phase front be defined by the feed steer-
ing angles Of and Of which are necessary to steer the mainbeam in the direction of 0 and k. Then, one
can show that the aperture path length errors are given by

AL = Lo- A singf cosof - Y' sinOf sinej - L. (A23)
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